Extremal orders of some functions connected to regular integers modulo n

نویسنده

  • Brăduţ Apostol
چکیده

Let V (n) denote the number of positive regular integers (mod n) less than or equal to n. We give extremal orders of V (n)σ(n) n2 , V (n)ψ(n) n2 , σ(n) V (n) , ψ(n) V (n) , where σ(n), ψ(n) are the sum-of-divisors function and the Dedekind function, respectively. We also give extremal orders for σ∗(n) V (n) and φ∗(n) V (n) , where σ∗(n) and φ∗(n) represent the sum of the unitary divisors of n and the unitary function corresponding to φ(n), the Euler’s function. Finally, we study some extremal orders of compositions f(g(n)), involving the functions from above.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Orders of Certain Functions Associated with Regular Integers (mod n)

Let V (n) denote the number of positive regular integers (mod n) that are ≤ n, and let Vk(n) be a multidimensional generalization of the arithmetic function V (n). We find the Dirichlet series of Vk(n) and give the extremal orders of some totients involving arithmetic functions which generalize the sum-of-divisors function and the Dedekind function. We also give the extremal orders of other tot...

متن کامل

O ct 2 00 7 Regular integers modulo n László Tóth ( Pécs , Hungary ) October

Let n = p ν 1 1 · · · p νr r > 1 be an integer. An integer a is called regular (mod n) if there is an integer x such that a 2 x ≡ a (mod n). Let ̺(n) denote the number of regular integers a (mod n) such that 1 ≤ a ≤ n. Here ̺(n) = (φ(p ν 1 1) + 1) · · · (φ(p νr r) + 1), where φ(n) is the Euler function. In this paper we first summarize some basic properties of regular integers (mod n). Then in or...

متن کامل

Asymptotic properties of functions defined on arithmetic semigroups

Asymptotic properties of certain special arithmetical functions, like the divisor function τ(n), the sum-of-divisors function σ(n) and the Euler function φ(n) can be investigated in the general setting of arithmetical semigroups. The book of J. Knopfmacher [8] contains a detailed study of such properties, including asymptotic formulae with error estimates and extremal orders of magnitude of fun...

متن کامل

Elementary Proofs of Parity Results for 5-regular Partitions

In a recent paper, Calkin et al. [N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, ‘Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8 (2008), #A60] used the theory of modular forms to examine 5-regular partitions modulo 2 and 13-regular partitions modulo 2 and 3; they obtained and conjectured various results. In this note, we use ...

متن کامل

Det-extremal cubic bipartite graphs

Let G be a connected k–regular bipartite graph with bipartition V (G) = X ∪Y and adjacency matrix A. We say G is det–extremal if per(A) = |det(A)|. Det–extremal k–regular bipartite graphs exist only for k = 2 or 3. McCuaig has characterized the det–extremal 3–connected cubic bipartite graphs. We extend McCuaig’s result by determining the structure of det–extremal cubic bipartite graphs of conne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013